Name: \qquad Proportional Relationship Homework Review

1. Kroger sells ground beef and ground chuck by the pound.

* the cost of x pounds of ground beef is represented by the equation $y=2.5 x$

\times	y	* the cost of 6 pounds of ground chuck is \$21.
0		
1		Complete the table for the equation $y=$ $2.5 x$ and then graph both situations on the graph
2		
3		
-1		
-2		

Questions 2-5 graph the equations using rise and run.
2. $y=2 x+3$
3. $y=3 x-4$

4. $y=\frac{5}{2} x-4$
5. $y=\frac{2}{3} x+2$

6. The cost y of x pounds of peanuts is represented by the equation $y=0.23 x$. The cost y for x pounds of pecans is represented in the table.

Pecans (oz)	3	6	9	12
Cost (dollars)	1.35	2.70	4.05	5.40

Which statement is true? Select all that apply
___a. the cost for peanuts is $\$ 0.22$ per ounce less than the cost for pecans
b. The cost for peanuts is greater than the cost for pecans
c. the cost for 8 ounces of peanuts is 3.60
d. the cost for 8 ounces of pecans is 3.60
e. a graph of the pecans cost per ounce would go through point $(0,0)$ and $(2,0.90)$
__f. a graph of the peanuts cost per ounce would have a slope of 0.23
7. The table and the equation show the approximate speeds for a roadrunner and a coyote running at top speed. Which animal runs faster?
Roadrunner

Number of Minutes	4	8	12	16
Number of Miles	140	280	420	560

Coyote
$y=42 x$, where x is the number of minutes and y is the number of miles
8. The price of strawberries at Fine Foods is $\$ 7.95$ for 3 pounds. At Best market, the price y for x pounds of strawberries is given by $y=2.9 x$. Which store sells strawberries at a higher unit price? Explain using words or math.

Use the graph to complete the following:
9. What is the slope of the line $\overline{A C}$?
10. What is the slope of the line $\overline{C D}$?
11. Is $\frac{A E}{E C}=\frac{C G}{x} \quad \mathrm{x}=$

