\qquad
\qquad

Rational and Irrational Number Notes

8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion, which repeats eventually into a rational number.

Rational Number -

Irrational Number -

Place the numbers in the correct place in the Venn diagram.

Reflect:

1) Consider the decimal 0.202002000200002000002 ... Do you think this decimal represents a rational number? Why or why not?
2) Do you think a negative sign affects whether or not a number is a rational number? Use $-\frac{4}{5}$ as an example. Why or why not?
3) Do you think a mixed number is a rational number? Explain.

Long Division Time:

Write the following fractions as decimals:

1. $\frac{5}{16}$
2. $\frac{2}{11}$

Question...Do you think that decimals that have repeating patterns always have the same number of digits in their pattern? Explain.

Writing Mixed Numbers as Decimals

Ms. Haley bought $3 \frac{1}{8}$ yards of material to make an outfit for her daughter. Write $3 \frac{1}{8}$ as a decimal.

Step 1: Turn to improper fraction $3 \frac{1}{8}$
Step 2: Divide numerator by denominator

Practice:
A. Abbey made $4 \frac{1}{5}$ quarts of Kool-Aid. Write $4 \frac{1}{5}$ as a decimal.
B. Josh bought a cantaloupe that weighed $6 \frac{2}{3}$ pounds. Write $6 \frac{2}{3}$ as a decimal.

Write each of the following fractions or improper fractions as decimals.
C. $-\frac{7}{20}$
D. $\frac{23}{4}$
E. $\frac{58}{8}$

Write the following as fractions/mixed numbers in lowest terms.
F. -0.4
G. 0.05
H. 0.75
I. -1.45
J. 4.35
K. Write each number in its appropriate box to show its placement along the number line.

-2.8	$\frac{2}{3}$	$2.1 \overline{6}$	$1 \frac{7}{8}$	0.25	$-\frac{13}{9}$

Repeating Decimal as a Fraction

Consider the following:
$A . x=0 . \overline{3} \quad(10) x=10(0 . \overline{3})$
$10 x=3 . \overline{3}$ Because $x=0 . \overline{3}$ you can subtract x from one side
$-x \quad-0 . \overline{3}$ and $0 . \overline{3}$ from the other
$9 x=3 \quad$ Now solve the equation for x.
B. $x=0 . \overline{37}$
$(100) x=100(0 . \overline{37})$
$100 x=37 . \overline{37}$ Because $x=0 . \overline{37}$ you can subtract x from one
$\begin{array}{lll}-x & -0 . \overline{37} & \text { side and } 0 . \overline{37} \text { from the other }\end{array}$
$99 x=37 \quad$ Now solve the equation for x.
C. $x=0 . \overline{512}$
$(1000) x=1000(0 . \overline{512})$
$1000 x=512 . \overline{512}$ Because $x=0 . \overline{512}$ you can subtract x from $-x \quad-0 . \overline{512} \quad$ one side and $0 . \overline{512}$ from the other. $999 x=512 \quad$ Now solve the equation for x.

What pattern do you see?

Do you think it will work with all repeating decimals?

What is the fraction for:
a. 0.1111111111
b. 0.135135135135
c. 0.3636363637

